Optimal Contraction Theorem for Exploration-Exploitation Tradeoff in Search and Optimization

نویسندگان

  • Jie Chen
  • Bin Xin
  • Zhihong Peng
  • LiHua Dou
  • Juan Zhang
چکیده

Global optimization process can often be divided into two subprocesses: exploration and exploitation. The tradeoff between exploration and exploitation (T:Er&Ei) is crucial in search and optimization, having a great effect on global optimization performance, e.g., accuracy and convergence speed of optimization algorithms. In this paper, definitions of exploration and exploitation are first given based on information correlation among samplings. Then, some general indicators of optimization hardness are presented to characterize problem difficulties. By analyzing a typical contraction-based three-stage optimization process, Optimal Contraction Theorem is presented to show that T:Er&Ei depends on the optimization hardness of problems to be optimized. T:Er&Ei will gradually lean toward exploration as optimization hardness increases. In the case of great optimization hardness, exploration-dominated optimizers outperform exploitation-dominated optimizers. In particular, random sampling will become an outstanding optimizer when optimization hardness reaches a certain degree. Besides, the optimal number of contraction stages increases with optimization hardness. In an optimal contraction way, the whole sampling cost is evenly distributed in all contraction stages, and each contraction takes the same contracting ratio. Furthermore, the characterization of optimization hardness is discussed in detail. The experiments with several typical global optimization algorithms used to optimize three groups of test problems validate the correctness of the conclusions made by T:Er&Ei analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems

Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...

متن کامل

Augmented Downhill Simplex a Modified Heuristic Optimization Method

Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...

متن کامل

SYMBIOTIC ORGANISMS SEARCH AND HARMONY SEARCH ALGORITHMS FOR DISCRETE OPTIMIZATION OF STRUCTURES

In this work, a new hybrid Symbiotic Organisms Search (SOS) algorithm introduced to design and optimize spatial and planar structures under structural constraints. The SOS algorithm is inspired by the interactive behavior between organisms to propagate in nature. But one of the disadvantages of the SOS algorithm is that due to its vast search space and a large number of organisms, it may trap i...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller

This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part A

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2009